Abstract Using molecular dynamics (MD) simulation, the deformation mechanisms of gradient nanograined (GNG) pure iron (Fe) were investigated. Simulations of uniaxial tensile experiments were conducted on samples exhibiting different grain size gradients (GSGs). The simulation results reveal the presence of a critical GNG parameter (g), at which point the GNG-Fe attains its highest strength. The deformation mechanisms of three representative samples, namely GNG-2 with the g value at the threshold, GNG-1 with a g value smaller than the critical threshold and GNG-4 with a g value exceeding it, were thoroughly investigated. Within the coarse-grained (CG) region of GNG-1, the primary deformation mechanism is predominantly characterized by planar defects, rather than being dominated by dislocations. The mechanisms of both “strain hardening” and “softening” were observed and discussed in this region. The deformation of the coarse grains occurs in a coordinated manner, and the magnitude of the back-stress is insufficient to trigger grain boundary (GB) motion in the fine-grained (FG) region. In contrast, the deformation of the CG region in the GNG-4 primarily depends on dislocation. The “hardening” and “softening” effects of the dislocations were discussed. In the FG region of GNG-4, the grains undergo deformation primarily through GB motion, a phenomenon attributed to the significant back-stress generated by the uncoordinated deformation exhibited by the coarse grains. In the CG area of sample 2 with the g value at threshold, both dislocation- and planar defects-controlled mechanisms are observed. In the FG of this sample, neither GB migration and grain rotation are found. Only the GB width becomes larger, indicating that the back-stress transferred from the CG area makes the GB more active, but not large enough to induce the GB migration or grain rotation. The results of this work may provide some theoretical supports for the deformation mechanism of the GNG materials.
Read full abstract