This study examined the effects of heat treatment on the microstructure and dynamic deformation characteristics of AA2519 aluminum alloy in T4, T6, and T8 tempers under high strain rates of 1000–4000 s−1. A Split Hopkinson pressure bar (SHPB) was utilized to characterize the mechanical response, and microstructural analysis was performed to examine the material’s microstructure. The findings indicated varied deformation across all three temper conditions. The dynamic behavior of each temper is influenced by its strength properties, which are determined by the aging type and the subsequent transformation of strengthening precipitates, along with the initial microstructure. At a strain rate of 1500 s−1, AA2519-T6 demonstrated a peak dynamic yield strength of 509 MPa and a flow stress of 667 MPa. These values are comparable to those recorded for AA2519-T8 at a strain rate of 3500 s−1. AA2519-T4 exhibited the lowest strength and flow stress characteristics. The T6 temper demonstrated initial stress collapse, dynamic strain aging, and an increased tendency for shear band formation and fracture within the defined strain rate range. The strain rates all showed similar trends in terms of strain hardening rate. The damage evolution of the alloy primarily involved the nucleation, shearing, and cracking of dispersoid particles.
Read full abstract