Many neurons of the mammalian master circadian oscillator in the suprachiasmatic nuclei (SCN) respond to light pulses with irradiance-dependent changes in firing. Here, we set out to better understand this irradiance coding ability by considering how the SCN tracks more continuous changes in irradiance at both population and single unit level. To this end, we recorded extracellular activity in the SCN of anaesthetised mice presented with up+down irradiance staircase stimuli covering moonlight to daylight conditions and incorporating epochs with steady light or superimposed higher frequency modulations (temporal white noise (WN) and frequency/contrast chirps). Single unit activity was extracted by spike sorting. The population response of SCN units to this stimulus was a progressive increase in firing rate at higher irradiances. This relationship was symmetrical for up vs. down phases of the ramp in the presence of white noise or chirps but exhibited hysteresis for steady light, with firing systematically higher during increasing irradiance. Single units also showed a monotonic relationship between firing and irradiance but exhibited diversity not only in response polarity (increases vs. decreases in firing), but also in the sensitivity (EC50 ) and slope of fitted functions. These data show that individual SCN neurons exhibit monotonic relationships between irradiance and firing rate but differ in the irradiance range over which they respond. This property may help the SCN to encode the large differences in irradiance found in nature using neurons with a constrained range of firing rates. KEY POINTS: Daily changes in environmental light (irradiance) entrain the suprachiasmatic nucleus (SCN) circadian clock. The mouse SCN shows graded increases in neurophysiological activity with light pulses of increasing irradiance. We show that this monotonic relationship between firing rate and irradiance is retained at population and single unit level when probed with more naturalistic staircase increases and decreases in irradiance. The irradiance response is more reliable in the presence of ongoing higher temporal frequency modulations in light intensity than under steady light. Single units varied in sensitivity allowing the population to cover a wide range of irradiances. Irradiance coding in the SCN has characteristics of a sparse code with individual neurons tracking different portions of the natural irradiance range. This property may address the challenge of encoding a 109 -fold day:night difference in irradiance within the constrained range of firing rates available to individual neurons.
Read full abstract