Browning of freshwaters, mainly caused by increased terrestrial organic carbon loading, has been widely studied during the last decades. However, there are still uncertainties regarding both the extent of browning in different aquatic ecosystems and the actual importance of different driving forces and mechanisms. To refine understanding of the extent and causes of browning and its temporal variation, we gathered a comprehensive dataset including 746 Finnish water quality monitoring stations representing various waterbody types: streams, rivers, lakes, and coastal waters. Monotonic trend analyses revealed that TOC concentrations increased in all waterbody types during the study period from 1990 to 2020, whereas non-linear trends indicated that upward trends in TOC concentrations have substantially decreased since the mid-2000s. However, despite the upward trends levelling off, non-linear analyses also indicated decreases in TOC concentrations at only a few stations. As a result, the TOC contents of the majority of Finnish waterbody types in 2020 were at a higher level than in 1990. To examine the driving forces of increasing TOC concentrations, we selected 100 riverine catchments and linked the detected trends to 24 different drivers, including both hydrometeorological and catchment characteristics. The increased TOC concentrations in surface waters could be connected to diverse human impacts: hydrometeorological variables impacted by climate change, decreased acidic deposition, and land use in terms of peatland drainage. The importance of increased temperatures was emphasized, and its role as a driver of increased leaching of organic carbon in the forthcoming years is expected to grow with climate change.
Read full abstract