In the present work, NiMo catalysts supported on SBA-15 were prepared with the addition of different amounts of citric acid (CA) in the impregnation solutions. The aim of this study was to inquire into the effect of the amount of citric acid on the activity and selectivity of the NiMo/SBA-15 catalysts in deep hydrodesulfurization (HDS). Catalysts were prepared by coimpregnation of Ni and Mo species from acidic aqueous solutions containing citric acid without further adjusting the solution's pH. The amount of citric acid used in the catalyst preparation was varied from CA:Mo molar ratio 0.5 to 2.0. In addition, a reference NiMo/SBA-15 catalyst was prepared without citric acid. After the impregnation, catalysts were dried (100°C, 6h) and calcined (500°C, 4h). The prepared catalysts were characterized by nitrogen physisorption, small-angle and powder X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy (DRS), temperature-programmed reduction (TPR), high resolution transmission electron microscopy (HRTEM) and tested in simultaneous HDS of dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) in a batch reactor at 300°C for 8h. XRD, DRS and TPR characterizations showed that Ni and Mo oxide species were well dispersed in all catalysts prepared with CA. In contrast, a NiMoO4 crystalline phase was detected by XRD in the reference NiMo/SBA-15 catalyst prepared without citric acid. Addition of citric acid to the impregnation solutions used for the catalyst preparation also resulted in an increase in the degree of sulfidation and in the dispersion of catalytically active MoS2 phase (elemental analysis, HRTEM). In accordance with this, HDS activity of the NiMo catalysts prepared with the addition of citric acid resulted to be significantly higher than that of the reference NiMo/SBA-15 sample for both sulfur-containing compounds tested (DBT and 4,6-DMDBT). It was found that the optimum amount of citric acid, which allows achieving the highest catalytic activity, corresponds to CA:Mo molar ratio equal to 1. Further increase in the amount of citric acid resulted in a slight decrease in the HDS activity. Regarding selectivity, addition of small amounts of CA, in general, resulted in an increase of the hydrogenation ability of the NiMo/SBA-15 catalysts. However, some differences in the selectivity of the catalysts were observed with different amounts of citric acid used.
Read full abstract