The article studies the simulation-based mathematical modeling of bioheat transfer under the Dirichlet boundary condition. We used complex non-linear dual-phase-lag bioheat transfer (DPLBHT) for analyzing the temperature distribution in skin tissues during hyperthermia treatment of infected cells. The perfusion term, metabolic heat source, and external heat source were the three parts of the volumetric heat source that were used in the model. The non-linear DPLBHT model predicted a more accurate temperature within skin tissues. The finite element Runge–Kutta (4,5) (FERK (4,5)) method, which was based on two techniques, finite difference and Runge–Kutta (4,5), was applied for calculating the result in the case of our typical non-linear problem. The paper studies and presents the non-dimensional unit. Thermal damage of normal tissue was observed near zero during hyperthermia treatment. The effects of the non-dimensional time, non-dimensional space coordinate, location parameter, regional parameter, relaxation and thermalization time, metabolic heat source, associated metabolic heat source parameter, perfusion rate, associated perfusion heat source parameter, and external heat source coefficient on the dimensionless temperature profile were studied in detail during the hyperthermia treatment process.