Adsorption technology for phosphorus (P) removal is considered promising and reutilization of post-adsorbent can contribute to promoting sustainable agricultural production. However, the long-lasting impact of the post-adsorbent on crop growth and P remains unclear. This study assessed the effects of P-adsorbed lanthanum-modified straw (La@straw-P) on the rice yield, P fractionation and associated water quality parameters. The findings indicated that, compared with traditional fertilizer regimes, La@straw-P expedited the P reduction in the flooding water achieving a rate of decline to the tertiary standard for surface water (0.20 mg/L) 3.8 times faster and enhanced increased the P harvest index by 17.00 %. Economic estimation proved the positive benefits of La@straw-P in planting-breeding combination system. Redundancy analysis (RDA) and co-occurrence network analysis (CONA) revealed that electrical conductivity (EC) and dissolved Fe played primary roles in regulating total P. Fourier transform infrared spectra (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), and soil P fractions collectively demonstrated that the abundant adsorption sites on La@straw-P could facilitate the transformation of active P into moderately Ca-bound P. This study proposes a strategy for recycling P-adsorbed materials to mitigate agricultural non-point P pollution.