Quantum-based technologies have been instrumental in the development of a whole range of devices that are used these days (such as lasers, transistors, LiDAR, GPS, MRI, and many more). These technologies that emanated from the Quantum 1.0 Revolution have become ubiquitous in modern civilization over the past 50 years. The product commercialization and mass production were enabled by scientists, researchers, engineers, and most importantly, by the skilled technological workforce. This workforce played a critical support role in transforming inventions into high-volume, marketable products. We are currently at the heart of the Second Quantum Revolution, which is fueled by the research in quantum computing, quantum communication, quantum cryptography, and quantum sensing. The scientific progress that is currently taking place in these areas is going to fundamentally change the way we sense the world around us, approach our security, and process critical information. Governments and private entities across the world have recognized the strategic importance of quantum research-enabled technologies and have invested a significant amount of money to support graduate programs and research institutions where scientists, engineers, and other professionals are earning advanced degrees and immediately being engaged in active Quantum 2.0 research. To the best of our knowledge, and despite considerable investment in quantum research, no active efforts or programs exist that would train a quantum technological workforce at the technician level to support Quantum 2.0. The quantum industry, on the other side, has clearly identified the need for highly skilled quantum technicians that are able to support the commercialization of the new products and inventions. The lack of a trained quantum technician workforce is a major shortcoming that may have a profound negative impact on the long-term prospects and sustainability of the emerging quantum industry. The EdQuantum project, funded through the National Science Foundation (NSF) Advanced Technological Education (ATE) program, is an effort to close this shortcoming and propose a well-defined curriculum through which the incumbent photonic and laser technicians in the United States will be upskilled with the new skills and competencies from quantum research-enabled technologies. This paper presents the results of the first phase of the EdQuantum project—the quantum industry survey. Over the last few months, we sought input from the quantum industry as to what skills and competencies should a future quantum technician possess to support its emerging needs. The results collected during the survey are presented in this paper along with their impact on the proposed educational curriculum. This paper also elaborates on the alignment of the proposed curriculum with a few ongoing initiatives in the skilled technical workforce education (such as NSB Vision 2030, Convergence Accelerators Initiative, and Skilled Technical Workforce Initiative).
Read full abstract