Ion-pair formation processes are studied in collisions of Rydberg atoms with neutral particles possessing small electron affinities. Nonadiabatic transitions from a Rydberg covalent term to an ionic term of a quasi-molecule are considered using the modified Landau-Zener theory supplemented with calculation of survival factors of an anion decaying in the Coulomb field of a positive ion core. Using the technique of irreducible tensor operators and the momentum representation of the wavefunction of a highly excited atom, exact expressions are obtained for transition matrix elements and the ionic-covalent coupling parameter. The approach developed in the paper provides the description beyond the scope of a conventional assumption about a small variation of the wavefunction of the Rydberg atom on the range of electron coordinates determined by the characteristic radius of the wavefunction of the anion. This allows one to correctly consider long-range effects of the interaction between a weakly bound electron and the neutral core of a negative ion in processes under study. It is shown by the example of thermal collisions of Xe(nf) atoms with CH3CN molecules that this is very important for a reliable quantitative description of anion formation with a low binding energy. The results are compared with experiments and calculations performed within the framework of a number of approximate methods.
Read full abstract