A space-time variational method is developed for retrieving upper-level vortex winds from geostationary satellite rapid infrared scans over hurricanes. In this method, new vortex-flow-dependent correlation functions are formulated for the radial and tangential components of the vortex wind. These correlation functions are used to construct the background error covariance matrix and its square root matrix. The resulting square root matrix is then employed to precondition the cost function, constrained by an advection equation formulated for rapidly scanned infrared image movements. This newly formulated and preconditioned cost function is more suitable for deriving upper-level vortex winds from GOES-16 rapid infrared scans over hurricanes than the cost function in the recently adopted optical flow technique. The new method was applied to band-13 (10.3 µm) brightness temperature images scanned every min from GOES-16 over Hurricanes Laura on 27 August 2020 and Hurricanes Ida on 29 August 2021. The retrieved vortex winds were shown to not only be much denser than operationally produced atmospheric motion vectors (AMVs) but also more rotational and better organized around the eyewall than the super-high-resolution AMVs derived from optical-flow technique. By comparing their component velocities (projected along radar beams) with limited radar velocity observations available near the cloud top, the vortex winds retrieved using the new method were also shown to be more accurate than the super-high-resolution AMVs derived from the optical-flow technique. The new method is computationally efficient for real-time applications and potentially useful for hurricane wind nowcasts. Furthermore, the combined use of VF-dependent covariance functions and imagery advection equation is not only novel but was also found to be critically important for the improved performance of the method. This finding implies that similar combined approaches can be developed with improved performance for retrieving vortex flows rapidly scanned using other types of remote sensing on different scales, such as tornadic mesocyclones rapidly scanned by phased-array radars.
Read full abstract