This article addresses the scanning path plan strategy of a rover team composed of three rovers, such that the team explores unknown dark outer space environments. This research considers a dark outer space, where a rover needs to turn on its light and camera simultaneously to measure a limited space in front of the rover. The rover team is deployed from a symmetric base station, and the rover team's mission is to scan a bounded obstacle-rich workspace, such that there exists no remaining detection hole. In the team, only one rover, the hauler, can locate itself utilizing stereo cameras and Inertial Measurement Unit (IMU). Every other rover follows the hauler, while not locating itself. Since Global Navigation Satellite System (GNSS) is not available in outer space, the localization error of the hauler increases as time goes on. For rover's location estimate fix, one occasionally makes the rover home to the base station, whose shape and global position are known in advance. Once a rover is near the station, it uses its Lidar to measure the relative position of the base station. In this way, the rover fixes its localization error whenever it homes to the base station. In this research, one makes the rover team fully scan a bounded obstacle-rich workspace without detection holes, such that a rover's localization error is bounded by letting the rover home to the base station occasionally. To the best of our knowledge, this article is novel in addressing the scanning path plan strategy, so that a rover team fully scans a bounded obstacle-rich workspace without detection holes, while fixing the accumulated localization error occasionally. The efficacy of the proposed scanning and localization strategy is demonstrated utilizing MATLAB-based simulations.