IntroductionCardiac substructure dose metrics are more strongly linked to late cardiac morbidities than whole-heart metrics. MR-guided radiation therapy (MRgRT) enables substructure visualization during daily localization, allowing potential for enhanced cardiac sparing. We extend a publicly available state-of-the-art deep learning (DL) framework, nnU-Net, to incorporate self-distillation (nnU-Net.wSD) for substructure segmentation for MRgRT. MethodsEighteen (Institute A) patients who underwent thoracic or abdominal radiation therapy on a 0.35 T MR-guided linac were retrospectively evaluated. On each image, one of two radiation oncologists delineated reference contours of 12 cardiac substructures (chambers, great vessels, and coronary arteries) used to train (n=10), validate (n=3), and test (n=5) nnU-Net.wSD leveraging a teacher-student network and comparing to standard 3D U-Net. The impact of using simulation data or including 3-4 daily images for augmentation during training was evaluated for nnU-Net.wSD. Geometric metrics (Dice similarity coefficient (DSC), mean distance to agreement (MDA), and 95% Hausdorff distance (HD95)), visual inspection, and clinical dose volume histograms (DVHs) were evaluated. To determine generalizability, Institute A's model was tested on an unlabeled dataset from Institute B (n=22) and evaluated via consensus scoring and volume comparisons. ResultsnnU-Net.wSD yielded a DSC (reported mean ± standard deviation) of 0.65±0.25 across the 12 substructures (Chambers: 0.85±0.05, Great Vessels: 0.67±0.19, and Coronary Arteries 0.33±0.16, mean MDA <3 mm, and mean HD95 <9 mm) while outperforming the 3D U-Net (0.583±0.28, p<0.01). Leveraging fractionated data for augmentation improved over a single MR-SIM timepoint (0.579±0.29, p<0.01). Predicted contours yielded DVHs that closely matched the clinical treatment plans where mean and D0.03cc doses deviated by 0.32±0.5 Gy and 1.42±2.6 Gy respectively. No statistically significant differences between Institute A and B volumes (p>0.05) for 11 of 12 substructures with larger volumes requiring minor changes and coronary arteries exhibiting more variability. ConclusionsThis work is a critical step to rapid and reliable cardiac substructure segmentation to improve cardiac sparing in low-field MRgRT.