SummaryThe cloud services demand has increased exponentially in the last decade due to its plethora of services. It becomes a significant platform to compute large and diverse applications over the internet. On the contrary, on‐demand resource allocation to a variety of applications becomes a serious issue due to dynamic workload conditions and uncertainty in the cloud environment. Several existing state of art techniques often fails to allocate the optimal resources to forthcoming demands, leading to an imbalance workload over cloud platform, degrading the performance. This article introduces a secure and self‐adaptive resource allocation framework that addressed the mentioned issues and allocates the most suitable resources to users' applications while ensuring the deadline constraints. Further, the proposed framework is integrated with a metaheuristic algorithm named enhanced spider monkey optimization algorithm that is based on the intelligent foraging behavior of spider monkeys. The proposed algorithm finds an optimal resource for the user's application using the fission‐fusion approach and improves multiple influential parameters like time, cost, degree of load balancing, energy consumption, task rejection ratio and so on. The experimental CloudSim based results verified that the proposed framework performs superior to state of art approaches like PSO, GSA, ABC, and IMMLB.
Read full abstract