Chinese characters are complex and contain discriminative information, meaning that their writers have the potential to be recognized using less text. In this study, offline Chinese writer identification based on a single character was investigated. To extract comprehensive features to model Chinese characters, explicit and implicit information as well as global and local features are of interest. A dual-branch multitask fusion network is proposed that contains two branches for global and local feature extraction simultaneously, and introduces auxiliary tasks to help the main task. Content recognition, stroke number estimation, and stroke recognition are considered as three auxiliary tasks for explicit information. The main task extracts implicit information of writer identity. The experimental results validated the positive influences of auxiliary tasks on the writer identification task, with the stroke number estimation task being most helpful. In-depth research was conducted to investigate the influencing factors in Chinese writer identification, with respect to character complexity, stroke importance, and character number, which provides a systematic reference for the actual application of neural networks in Chinese writer identification.
Read full abstract