Radiotherapy has been demonstrated to be one of the most significant treatments for cervical cancer, during which accurate and efficient delineation of target volumes is critical. To alleviate the data demand of deep learning and promote the establishment and promotion of auto-segmentation models in small and medium-sized oncology departments and single centres, we proposed an auto-segmentation algorithm to determine the cervical cancer target volume in small samples based on multi-decoder and semi-supervised learning (MDSSL), and we evaluated the accuracy via an independent test cohort. In this study, we retrospectively collected computed tomography (CT) datasets from 71 pelvic cervical cancer patients, and a 3:4 ratio was used for the training and testing sets. The clinical target volumes (CTVs) of the primary tumour area (CTV1) and pelvic lymph drainage area (CTV2) were delineated. For definitive radiotherapy (dRT), the primary gross target volume (GTVp) was simultaneously delineated. According to the data characteristics for small samples, the MDSSL network structure based on 3D U-Net was established to train the model by combining clinical anatomical information, which was compared with other segmentation methods, including supervised learning (SL) and transfer learning (TL). The dice similarity coefficient (DSC), 95% Hausdorff distance (HD95) and average surface distance (ASD) were used to evaluate the segmentation performance. The ability of the segmentation algorithm to improve the efficiency of online adaptive radiation therapy (ART) was assessed via geometric indicators and a subjective evaluation of radiation oncologists (ROs) in prospective clinical applications. Compared with the SL model and TL model, the proposed MDSSL model displayed the best DSC, HD95 and ASD overall, especially for the GTVp of dRT. We calculated the above geometric indicators in the range of the ground truth (head-foot direction). In the test set, the DSC, HD95 and ASD of the MDSSL model were 0.80/5.85mm/0.95mm for CTV1 of post-operative radiotherapy (pRT), 0.84/ 4.88mm/0.73mm for CTV2 of pRT, 0.84/6.58mm/0.89mm for GTVp of dRT, 0.85/5.36mm/1.35mm for CTV1 of dRT, and 0.84/4.09mm/0.73mm for CTV2 of dRT, respectively. In a prospective clinical study of online ART, the target volume modification time (MTime) was 3-5min for dRT and 2-4min for pRT, and the main duration of CTV1 modification was approximately 2min. The introduction of the MDSSL method successfully improved the accuracy of auto-segmentation for the cervical cancer target volume in small samples, showed good consistency with RO delineation and satisfied clinical requirements. In this prospective online ART study, the application of the segmentation model was demonstrated to be useful for reducing the target volume delineation time and improving the efficiency of the online ART workflow, which can contribute to the development and promotion of cervical cancer online ART.