Podoplanin (PDPN) overexpression is associated with poor clinical outcomes in various tumors. PDPN is involved in malignant tumor progression by promoting invasiveness and metastasis. Therefore, PDPN is considered a promising target of monoclonal antibody (mAb)-based therapy. Because PDPN also plays an essential role in normal cells such as kidney podocytes, cancer specificity is required to reduce adverse effects on normal cells. We developed a cancer-specific mAb (CasMab) against PDPN, PMab-117 (rat IgM, kappa), by immunizing rats with PDPN-overexpressed glioblastoma cells. The recombinant mouse IgG2a-type PMab-117 (PMab-117-mG2a) reacted with the PDPN-positive tumor PC-10 and LN319 cells but not with PDPN-knockout LN319 cells in flow cytometry. PMab-117-mG2a did not react with normal kidney podocytes and normal epithelial cells from the lung bronchus, mammary gland, and corneal. In contrast, one of the non-CasMabs against PDPN, NZ-1, showed high reactivity to PDPN in both tumor and normal cells. Moreover, PMab-117-mG2a exerted antibody-dependent cellular cytotoxicity in the presence of effector splenocytes. In the human tumor xenograft models, PMab-117-mG2a exhibited potent antitumor effects. These results indicated that PMab-117-mG2a could be applied to antibody-based therapy against PDPN-expressing human tumors while reducing the adverse effects.