PurposeUsing regional homogeneity (ReHo) and functional connectivity (FC) to assess alterations in brain function and their potential relation to different Hoehn and Yahr (H&Y) stages in Parkinson's disease (PD). Materials and methods66 patients with PD and 57 age- and sex-matched healthy control (HC) participants were recruited. All subjects underwent clinical assessments and resting-state functional magnetic resonance imaging (rs-fMRI) scanning. We analyzed alterations in regional brain activity using ReHo analyses in all subjects and further explored their relationship to disease severity. Finally, the brain region significantly associated with disease severity was used as a seed point to analyze the FC changes between it and other brain regions in the whole brain. ResultsCompared with HC participants, PD patients showed a significant decrease ReHo in the sensorimotor network (bilateral precentral and postcentral gyrus). The ReHo value of the left precentral gyrus in PD patients decreased with increasing H&Y stage and correlated negatively with Unified Parkinson’s Disease Rating Scale (UPDRS) III scores. Further, FC analysis of the left precentral gyrus as a region of interest showed that functional activity between the left precentral gyrus and sensorimotor network, default network, and visual network was decreased. ConclusionThe left precentral gyrus plays an important role in the pathophysiological mechanisms of PD patients, and this finding further highlights the potential of the primary motor cortex (M1) as a non-invasive therapeutic target for neuromodulation in PD patients.
Read full abstract