The nonlinear phenomena accompanying the process of light generation in high-power tapered semiconductor lasers are studied using a combination of simulation and experiment. Optical pumping, electrical overpumping, filamentation, and spatial hole burning are shown to be the key nonlinear phenomena influencing the operation of tapered lasers at high output powers. In the particular tapered laser studied, the optical pumping effect is found to have the largest impact on the output beam quality. The simulation model used in this study employs the wide-angle finite-difference beam propagation method for the analysis of the optical propagation within the cavity. Quasi-three-dimensional (3-D) thermal and electrical models are used for the calculation of the 3-D distributions of the temperature, electrons, holes, and electrical potential. The simulation results reproduce key features and the experimental trends.
Read full abstract