With the progress of iron-based superconducting wire and tape fabrication technologies, extensive research has been conducted on iron-based superconducting coils. A deep understanding of the energizing characteristics of these coils is crucial for their large-scale application. This study investigates two metal-insulated double pancake coils, each having a different number of turns and co-wound with Ba0.6K0.4Fe2As2 iron-based superconducting tape and stainless-steel tape. We conducted critical current tests, sudden-discharge experiments, and charge-discharge cycles at 4.2 K to obtain the time constants and characteristic resistances of the coils. Additionally, the impact of stainless-steel as co-wound material on coil performance was analyzed. Theoretical models were employed to calculate the charging processes and validate them against experimental results. This research offers valuable insights for the practical application of iron-based superconducting materials.
Read full abstract