The combination of aquaculture industry with floating offshore wind turbines has the potential to generate significant economic advantages for both industries. To investigate this potential, the present study focuses on analyzing the heave, and pitch dynamic responses of a Spar-type floating offshore wind turbine that incorporates an aquaculture feeding system. A series of water tank model tests, together with numerical calculations, were conducted using a 1/56 scale model of a 2 MW, displacement 3500 tons, floating Spar-type wind turbine. The feeding system was placed inside the Spar and slightly above the waterline by adjusting the configuration of the total weight. The weight of the feeding system in the experiments is 100 tons, capable of sustaining 300 tons of fish for an entire week, and the realistic applications have been expanded using the numerical calculation. For this reason, the present study serves a good case study for general understanding, because the integration of the feeding system inevitably raises the center of gravity of the structure and potentially affects its overall stability. The experiments revealed no discernible increase in the heave motion. Moreover, the pitch motion theoretically increased, but occasionally decreased in the experiments with the overall inclination angles being less than 1.2 degrees during the experiments. As a result, the present study supports the practice of integrating a Spar-type wind turbine with feeding systems. Future research should continue to comprehensively examine, both experimentally and numerically, the motion responses of the wind turbine and aquaculture facilities with varying configurations.
Read full abstract