One of the main indicators of the corrector section of the high-speed characteristics of the tractor engine is its torque adaptability factor. The article describes the method of General solution of the problem of calculation of this coefficient. The method is to minimize the difference between the two functions (optimality criterion): the first - the dependence of the denominator of the geometric series of gears on the coefficient of adaptability, the second-the dependence of the denominator on the tractor power range, that is, the ratio of the tangential thrust force in the last gear to the same force in the first gear. Taking into account the found coefficient of adaptability by the moment, the rotation frequency of the motor shaft at the maximum torque, the coefficient of adaptability of the engine by the shaft speed, the traction and speed ranges, the theoretical speed in the last gear are determined. The speed of the shaft at the maximum torque is determined from the condition that the engine load factor by power at the maximum torque is equal to 0,85. The power range is determined by the results of minimization of the optimality criterion, the speed range is equal to C-low. The speed of the tractor in the last gear is determined taking into account the given speed in the first gear and the found speed range. The generally accepted range of minimum values of the coefficient of adaptability, based on the time increase in traction resistance, is 1,15...1,20. In some modern tractor engines, this co-efficiency is greater than 1,2. The aim of the article is to optimize the interval of adaptability coefficient values greater than 1,2. The object of study - the engine of a wheeled tractor traction class 3. The initial material-nomi-nal traction and weight of the tractor, its traction range, the interval of theoretical speed in first gear. Research methods-nel programming using the minimization of the convex function; approximation of the linear function of the torque dependence on the current speed of the shaft. The main conclusion: given the accepted criterion of optimality, constraints, and the coefficient of variation moment of resistance of the optimum the coefficient of adaptability at the twisting mo-ment of tractor engines comply with the interval of 1,27 to 1,45.
Read full abstract