We consider the validity of Prandtl boundary layer expansion of solutions to the initial boundary value problem for inhomogeneous incompressible magnetohydrodynamics equations in the half-plane when both viscosity and resistivity coefficients tend to zero, where the no-slip boundary condition is imposed on velocity while the perfectly conducting condition is given on magnetic field. Since there exist strong boundary layers, the essential difficulty in establishing the uniform L∞ estimates of the error functions comes from the unboundedness of vorticity of strong boundary layers. Under the assumptions that the viscosity and resistivity coefficients take the same order of a small parameter and the initial tangential component of magnetic field has a positive lower bound near the boundary, we prove the validity of Prandtl boundary layer ansatz in L∞ sense in Sobolev framework. Compared with the homogeneous incompressible case considered in [33], there exists a strong boundary layer of density. Consequently, some suitable functionals should be designed and the elaborated co-normal energy estimates will be involved in analysis due to the variation of density and the interaction between the density and velocity.
Read full abstract