Adoptive cell therapy using chimeric antigen receptor (CAR) T-cells has proven to be lifesaving for many cancer patients. However, its therapeutic efficacy has been limited in solid tumors. One key factor for this are cancer-associated fibroblasts (CAFs), that modulate the tumor microenvironment (TME) to inhibit T cell infiltration and induce “T cell dysfunction”. Additionally, the sparsity of tumor-specific antigens (TSA) and expression of CAR-directed tumor-associated antigens (TAA) on normal tissues often results in “on-target off-tumor” cytotoxicity, raising safety concerns. Using TALEN-mediated gene editing, we present here an innovative CAR-T cell engineering strategy to overcome these challenges. Our allogeneic "Smart CAR T-cells” are designed to express a constitutive CAR, targeting FAP+ CAFs in solid tumors. Additionally, a second CAR targeting a Tumor Associated Antigen (TAA) such as mesothelin is specifically integrated at a TCR signaling-inducible locus like PDCD1. FAPCAR-mediated CAF targeting induces expression of the mesothelin-CAR, establishing an IF/THEN-gated circuit sensitive to dual antigen sensing. Using this approach, we observe enhanced anti-tumor cytotoxicity, while limiting "on-target off-tumor" toxicity. Our study thus demonstrates TALEN-mediated gene editing capabilities for design of allogeneic IF/THEN-gated Dual CAR T-cells which efficiently target immunotherapy-recalcitrant solid tumors while mitigating potential safety risks, encouraging clinical development of this strategy.