Carboxymethyl chitosan (CMCS) has emerged as a promising biopolymer carrier for controlled release formulations of pesticide. In this study, manganese-based carboxymethyl chitosan hydrogel was facilely prepared to encapsulate and release fungicide prothioconazole in a controllable manner. The loading content (LC) and encapsulation efficiency (EE) of prothioconazole were optimized by orthogonal test. When scaled up under the optimal condition, the corresponding LC and EE were 22.17 % and 68.38 %, respectively. The result showed that the pH-triggered release behavior of prothioconazole for the hydrogels was consistent with swelling behavior. The pesticide rapidly released in neutral and slightly alkaline solutions than in acidic conditions. Moreover, the prepared hydrogel showed enhanced fungicidal ability against wheat take-all pathogen (Gaeumannomyces graminis var. tritic) compared to that of prothioconazole technical material. This research seeks to provide a promising approach to develop metal and polysaccharide-based hydrogels to control the pesticide release and reduce pesticide use in sustainable agriculture application.
Read full abstract