The majority of nucleated somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs). The process of reprogramming involves epigenetic remodelling to turn on pluripotency-associated genes and turn off lineage-specific genes. Some evidence shows that iPSCs retain epigenetic marks of their cell of origin and this “epigenetic memory” influences their differentiation potential, with a preference towards their cell of origin. Here, we reprogrammed proximal tubule cells (PTC) and tail tip fibroblasts (TTF), from a reprogrammable mouse to iPSCs and differentiated the iPSCs to renal progenitors to understand if epigenetic memory plays a role in renal differentiation. This model allowed us to eliminate experimental variability due to donor genetic differences and transfection of the reprogramming factors such as copy number and integration site. In this study we demonstrated that early passage PTC iPSCs and TTF iPSCs expressed low levels of renal progenitor genes and high levels of pluripotency-associated genes, and the transcriptional levels of these genes were not significantly different between PTC iPSCs and TTF iPSCs. We used ChIP-seq of H3K4me3, H3K27me3, H3K36me3 and global DNA methylation profiles of PTC iPSCs and TTF iPSCs to demonstrate that global epigenetic marks were not different between the cells from the two different sets of tissue samples. There were also no epigenetic differences observed when kidney developmental genes and pluripotency-associated genes were closely examined. We did observe that during differentiation to renal progenitor cells the PTC iPSC-derived renal cells expressed higher levels of three renal progenitor genes compared to progenitors derived from TTF iPSCs but the underlying DNA methylation and histone methylation patterns did not suggest an epigenetic memory basis for this.