The basolateral amygdala (BLA) is increasingly recognized as a key regulator of depression and anxiety-like behaviors. However, the specific contribution of individual BLA neurons to these behaviors remains poorly understood. Building on our previous study, which demonstrated increased activity in glutamatergic BLA neurons in response to aversive stimuli and that enhancing inhibition in the BLA can alleviate depressive-like behaviors, we investigated the role of individual BLA GABAergic neurons (BLAGABA) in depressive and anxiety-like phenotypes. To address this question, we employed a comprehensive array of techniques, including c-fos staining, fiber photometry recording, optogenetic and chemogenetic manipulation, and behavior analysis. Our findings indicate that BLAGABA neurons show decreased activity during tail suspension and after chronic social defeat stress (CSDS) during social interaction. High-frequency activation of BLAGABA neurons attenuated depressive and anxiety-like behaviors, while low-frequency activation had no effect. Fiber photometry recordings revealed increased activity in BLA GABAergic neurons expressing somatostatin (SST), parvalbumin (PV), and cholecystokinin (CCK) during footshock aversive stimuli. Moreover, we found increased activity in PV and SST neurons and decreased activity in CCK-GABA neurons in the BLA during tail suspension stress. However, after CSDS, BLAPV neurons displayed decreased activity, while SST and CCK neurons showed no changes during the social interaction test. Behavioral analysis demonstrated that chemogenetic inhibition of PV and CCK-GABA neurons induced depressive and anxiety-like behaviors. whereas SST neuron inhibition had no effect. Conversely, chemogenetic activation of BLAPV neurons alleviated depressive behaviors, and activation of BLACCK-GABA neurons alleviated at least partly both depressive and anxiety-like behaviors. This study provides compelling evidence that BLAPV neurons play a critical role in regulating depressive-like behaviors, and that BLACCK-GABA neurons are involved, at least in part, in modulating both depressive-like and anxiety-like behaviors in mice.
Read full abstract