This study examines the dry milling process of a rare-earth-based magnesium alloy, emphasizing the optimization of the milling parameters and their impact on the surface quality, cutting forces, and the rate of material removal. The objective is to improve our comprehension of the milling behavior of the Mg-Gd-Y-Er alloy. The Taguchi technique is adopted to formulate the experimental design. This study methodically investigates the influence of heat treatment (T4 and T6) on milling performance, and the effects of speed, feed rate, and depth of cut. The output variables considered for this investigation are the surface roughness (Ra, Rz, Sa, and Sz), material removal rate (MRR), and cutting force. To optimize the milling parameters and achieve superior outcomes, the multi-objective optimization technique TOPSIS is used. At a feed rate of 150 mm/min, a spindle speed of 1500 rpm, and a depth of cut of 1 mm, the T4-treated sample exhibits a minimum surface roughness value of 0.0305 µm. The highest resultant force values of 96.4416 N and 176.1070 N for 200 °C and 225 °C T6-treated alloys are obtained by combining process parameters such as a spindle speed of 1500 rpm, a feed rate of 50 mm/min, and a depth of cut of 1.5 mm. Furthermore, the maximum closeness coefficient value is achieved by combining a spindle speed of 1000 to 1500 rpm, a feed rate of 150 mm/min, and a depth of cut of 0.5 mm to 1 mm. The closeness coefficient value is significantly influenced by the most significant process parameters, as indicated by the ANOVA results.
Read full abstract