Osteoarthritis (OA) is a chronic joint disease that results in biomechanical and morphological changes that contribute to cartilage degradation. Ketoprofen (KP), used in the treatment of OA, is a selective inhibitor of cyclooxygenase-2 (COX-2). Topical administration of KP bypasses gastric irritation as well as first-pass metabolism and increases localized delivery. The research intricates fabrication and optimization of KP-loaded transethosomes (KP-TEs) via Taguchi orthogonal array design and Central composite design (CCD). The optimized KP-TEs depicted an average vesicle size of 110.0 ± 1.70 nm, poly dispersibility index (PDI) of 0.103 ± 0.01, zeta potential −6.08 ± 0.27 mV, and conductivity of 0.049 ± 0.0001 mS/cm. The optimized KP-TEs were loaded in composite hyaluronic acid (HA) and poloxamer 407 (Px407) for an improvement of osteotrophic and chondroprotective transethosomal gel. The drug content of KP-TEs-HA/Px407 gel was found to be 90.08 ± 1.25 %. Preclinical research has been carried out by using the monosodium iodoacetate to develop model for osteoarthritis in male wistar rats. The X-ray imaging of KP-TEs-HA/Px407 gel treated group showed intact meniscus, healthy articular joint, and normal synovial lining same as the healthy control group. The IL − 1β IL-6, IL-22, TNF-α, and IL-10, levels, X-ray imaging, and studies on histopathology demonstrated the effectiveness of transethosomal gel in reducing pain and inflammation.
Read full abstract