Parallel–serial (hybrid) manipulators represent robotic systems composed of kinematic chains with parallel and serial structures. These manipulators combine the benefits of both parallel and serial mechanisms, such as increased stiffness, high positioning accuracy, and a large workspace. This study discusses the existing architectures and applications of parallel–serial robots and the methods of their design and analysis. The paper reviews around 500 articles and presents over 150 architectures of manipulators used in machining, medicine, and pick-and-place tasks, humanoids and legged systems, haptic devices, simulators, and other applications, covering both lower mobility and kinematically redundant robots. After that, the paper considers how researchers have developed and analyzed these manipulators. In particular, it examines methods of type synthesis, mobility, kinematic, and dynamic analysis, workspace and singularity determination, performance evaluation, optimal design, control, and calibration. The review concludes with a discussion of current trends in the field of parallel–serial manipulators and potential directions for future studies.
Read full abstract