Abstract Kinematic multi-sensor systems (MSS) describe their movements through six-degree-of-freedom trajectories, which are often evaluated primarily for accuracy. However, understanding their self-reported uncertainty is crucial, especially when operating in diverse environments like urban, industrial, or natural settings. This is important, so the following algorithms can provide correct and safe decisions, i.e. for autonomous driving. In the context of localization, light detection and ranging sensors (LiDARs) are widely applied for tasks such as generating, updating, and integrating information from maps supporting other sensors to estimate trajectories. However, popular low-cost LiDARs deviate from other geodetic sensors in their uncertainty modeling. This paper therefore demonstrates the uncertainty evaluation of a LiDAR-based MSS localizing itself using an inertial measurement unit (IMU) and matching LiDAR observations to a known map. The necessary steps for accomplishing the sensor data fusion in a novel Error State Kalman filter (ESKF) will be presented considering the influences of the sensor uncertainties and their combination. The results provide new insights into the impact of random and systematic deviations resulting from parameters and their uncertainties established in prior calibrations. The evaluation is done using the Mahalanobis distance to consider the deviations of the trajectory from the ground truth weighted by the self-reported uncertainty, and to evaluate the consistency in hypothesis testing. The evaluation is performed using a real data set obtained from an MSS consisting of a tactical grade IMU and a Velodyne Puck in combination with reference data by a Laser Tracker in a laboratory environment. The data set consists of measurements for calibrations and multiple kinematic experiments. In the first step, the data set is simulated based on the Laser Tracker measurements to provide a baseline for the results under assumed perfect corrections. In comparison, the results using a more realistic simulated data set and the real IMU and LiDAR measurements provide deviations about a factor of five higher leading to an inconsistent estimation. The results offer insights into the open challenges related to the assumptions for integrating low-cost LiDARs in MSSs.