PurposeMutations in RHO, the gene for a rhodopsin, are a leading cause of autosomal dominant retinitis pigmentosa. The objective of this study was to determine if a synthetic retinal analogue (SRD005825) serves as a pharmacologic chaperone to promote appropriate membrane trafficking of a mutant version of human rhodopsin.MethodsA tetracycline-inducible cell line was used to produce human wild-type and T17M opsin. A cell-free assay was used to study the impact of SRD005825 on binding of 9-cis-retinal to wild-type opsin. A cell-based assay was used to measure the effect of SRD005825 on the generation of rhodopsin by spectroscopy and Western blot and the transport of rhodopsin to the cell membrane by confocal microscopy. Mice bearing T17M RHO were treated with daily oral doses of SRD005825, and retinal degeneration was measured by spectral-domain optical coherence tomography and, at the conclusion of the experiment, by electroretinography and morphometry.ResultsSRD005825 competed with 9-cis-retinal for binding to wild-type opsin but promoted the formation of rhodopsin in HEK293 cells and the trafficking of T17M rhodopsin to the plasma membrane of these cells. T17M transgenic mice exhibited rapid retinal degeneration, but thinning of the outer nuclear layer representative of photoreceptor cell bodies was delayed by treatment with SRD005825. Electroretinography a-wave and b-wave amplitudes were significantly improved by drug treatment.ConclusionsSRD005825 promoted the reconstitution of mutant rhodopsin and its membrane localization. Because it delayed retinal degeneration in the mouse model, it has potential as a therapeutic for autosomal dominant retinitis pigmentosa.Translational RelevanceSRD005825 may be useful as a treatment to delay retinal degeneration in retinitis pigmentosa patients with rhodopsin mutations causing misfolding of the protein.
Read full abstract