Vaccination against bovine mastitis lags behind despite high demand from the dairy industry and margin for efficacy improvement. We previously compared two immunization protocols against E. coli using either only the intramuscular route or a combination of intramuscular and mammary ductal routes, also known as ‘prime and pull’ strategy. A homologous mammary challenge during the memory phase showed that immunization favorably modified the mastitis course, notably in locally immunized cows in comparison to intramuscular and control adjuvant-only groups. Here, we performed whole-blood profiling through RNA-seq transcriptome and plasma cytokine 15-plex analyses at time points of the E. coli mastitis that showed significant clinical and laboratory differences among the groups. Diminished production of inflammatory cytokines and increased IFNγ were detected in the blood of immunized cows, where a T lymphocyte activation profile was evidenced at 12-h post infection. Acute phase neutropenia was less severe in these cows, and pathways related to neutrophil diapedesis and monocyte activation were also present. Furthermore, three intramammary-immunized cows showing faster healing and shorter mastitis duration had gene profiles that differed from their counterparts, but without any clue for the mastitis susceptibility difference. Inasmuch, when gene expression of CD4 T cells was assessed in mammary tissue, enrichment of IL-17-associated pathways was identified in the quarters of intramammary-immunized cows not only after challenge but also in the control quarters that were not infected. These findings indicate that local immunization mobilizes protective mechanisms that rely on the settlement of type 3 immunity-related CD4 T cells prior to infection.