BackgroundThis study aims to evaluate the integration of optical coherence tomography (OCT) and peripheral blood immune indicators for predicting oral cancer prognosis by artificial intelligence.MethodsIn this study, we examined patients undergoing radical oral cancer resection and explored inherent relationships among clinical data, OCT images, and peripheral immune indicators for oral cancer prognosis. We firstly built a peripheral blood immune indicator-guided deep learning feature representation method for OCT images, and further integrated a multi-view prognostic radiomics model incorporating feature selection and logistic modeling. Thus, we can assess the prognostic impact of each indicator on oral cancer by quantifying OCT features.ResultsWe collected 289 oral mucosal samples from 68 patients, yielding 1,445 OCT images. Using our deep radiomics-based prognosis model, it achieved excellent discrimination for oral cancer prognosis with the area under the receiver operating characteristic curve (AUC) of 0.886, identifying systemic immune-inflammation index (SII) as the most informative feature for prognosis prediction. Additionally, the deep learning model also performed excellent results with 85.26% accuracy and 0.86 AUC in classifying the SII risk.ConclusionsOur study effectively merged OCT imaging with peripheral blood immune indicators to create a deep learning-based model for inflammatory risk prediction in oral cancer. Additionally, we constructed a comprehensive multi-view radiomics model that utilizes deep learning features for accurate prognosis prediction. The study highlighted the significance of the SII as a crucial indicator for evaluating patient outcomes, corroborating our clinical statistical analyses. This integration underscores the potential of combining imaging and blood indicators in clinical decision-making.Trial registrationThe clinical trial associated with this study was prospectively registered in the Chinese Clinical Trial Registry with the trial registration number (TRN) ChiCTR2200064861. The registration was completed on 2021.
Read full abstract