Recently, a certain class of synthetic molecules has been shown to form ion channels, the pore of which is lined with hydrophobic acyl chains [M. Sokabe, in: F. Oosawa, H. Hayashi, T. Yoshioka (Eds.), Transmembrane Signaling and Sensation, JSSP/VNU Science Press BV, Tokyo, 1984, p. 119; F. Hayashi, M. Sokabe, M. Takagi, K. Hayashi, U. Kishimoto, Biochim. Biophys. Acta, 510 (1978) 305; M.J. Pregel, L. Jullien, J. Canceill, L. Lacombe, J.M. Lehn, J. Chem. Soc. Perkin Trans., 2 (1995) 417; Y. Tanaka, Y. Kobuke, M. Sokabe, Angew. Chem. Int. Ed. Engl., 34 (1995) 693; M. Sokabe, Z. Qi, K. Donowaki, H. Ishida, K. Okubo, Biophys. J., 70 (1996) A201; H. Ishida, K. Donowaki, Y. Inoue, Z. Qi, M. Sokabe, Chem. Lett. (1997) p. 953]. As an initial step towards understanding the physical mechanisms of ion permeation across such a hydrophobic pore, systematic molecular dynamics simulations were performed to investigate dynamic and energetic properties of water molecules inside the pore using a dimer of alanine- N′-acylated cyclic peptide as a channel model. Dynamic energy profiles for water molecules indicated that the energy barrier at the middle region of the pore is approximately 2–3 kcal/mol higher than that in the cap water region which was defined as a vicinity region of the channel entrance. Energetics analyses demonstrated that the mutual interactions among intrapore water molecules are the major factor to give favorable interaction (negative energy contribution) for themselves. The pore, despite being lined with acyl chains, has a favorable van der Waals interaction with intrapore water molecules. These results may help to explain why water-filled channels can be formed by the hydrophobic helices in natural channels.
Read full abstract