Abstract The study focuses on biases in ocean temperature profiles obtained by means of Satellite Relay Data Loggers (SRDL recorders) and time–depth recorder (TDR) attached to marine mammals. Quasi-collocated profiles from Argo floats and from ship-based conductivity–temperature–depth (CTD) profilers are used as reference. SRDL temperature biases depend on the sensor type and vary with depth. For the most numerous group of Valeport 3 (VP3) and conductivity–temperature–fluorescence (CTF) sensors, the bias is negative except for the layer 100–200 m. The vertical bias structure suggests a link to the upper-ocean thermal structure within the upper 200-m layer. Accounting for a time lag which might remain in the postprocessed data reduces the bias variability throughout the water column. Below 200-m depth, the bias remains negative with the overall mean of −0.027° ± 0.07°C. The suggested depth and thermal corrections for biases in SRDL data are within the uncertainty limits declared by the manufacturer. TDR recorders exhibit a different bias pattern, showing the predominantly positive bias of 0.08°–0.14°C below 100 m primarily due to the systematic error in pressure. Significance Statement The purpose of this work is to improve the consistency of the data from the specific instrumentation type used to measure ocean water temperature, namely, the data from miniature temperature sensors attached to marine mammals. As mammals dive during their route to and from their feeding areas, these sensors measure water temperature and dataloggers send the measured temperature data to oceanographic data centers via satellites as soon as the mammals return to the sea surface. We have shown that these data exhibit small systematic instrumental errors and suggested the respective corrections. Taking these corrections into account is important for the assessment of the ocean climate change.