In this article, we model the two most market-capitalised public, open and permissionless blockchain implementations, Bitcoin (BTC) and Ethereum (ETH), as a System of Systems (SoS) of public blockchains. We study the concepts of blockchain, BTC, ETH, complex networks, SoS Engineering and intentional risk. We analyse BTC and ETH from an open SoS perspective through the main properties that seminal System of Systems Engineering (SoSE) references propose. This article demonstrates that these public blockchain implementations create networks that grow in complexity and connect with each other. We propose a methodology based on a complexity management lever such as SoSE to better understand public blockchains such as BTC and ETH and manage their evolution. Our ultimate objective is to improve the resilience of public blockchains against intentional risk: a key requirement for their mass adoption. We conclude with specific measures, based on this novel systems engineering approach, to effectively improve the resilience against intentional risk of the open SoS of public blockchains, composed of a non-inflationary money system, “sound money”, such as BTC, and of a world financial computer system, “a financial conduit”, such as ETH. The goal of this paper is to formulate a SoS that transfers digital value and aspires to position itself as a distributed alternative to the fiat currency-based financial system.