Purpose. To develop a model and construct an experimental, innovative co-generator with high energy efficiency and low emissions. This involves developing a system that can efficiently generate both electricity and heat simultaneously while minimizing emissions, contributing to sustainability efforts, and addressing energy demands in a more environmentally friendly manner. Methodology. To achieve the goal, a system approach is utilized, enabling the selection of modelling types for the development of an experimental, cutting-edge co-generation system capable of efficiently producing both electricity and heat with superior energy efficiency and minimal emissions. For this purpose, the following steps were completed: processing and summarizing available literature and patent sources, analysing scientific and technical papers on the selection and application of modelling types in co-generation systems, and considering principles and individual approaches to input data formation for mathematical modelling. This process enables the selection of a mechanism and the creation of simulation models for effective energy production at various enterprises. Findings. Assessment is performed of the energy efficiency of the co-generator system under various operating conditions, comparing it with existing conventional methods of electricity and heat generation. Results are presented of performance testing to determine the system’s capability to simultaneously generate electricity and heat efficiently, considering factors such as output stability, load responsiveness, and overall reliability. Identification and evaluation are performed of innovative technologies and methodologies integrated into the co-generator design, highlighting their effectiveness in enhancing energy efficiency and reducing emissions. Insights into any operational challenges encountered during the construction, testing, and optimization phases, along with proposed solutions or improvements to solve these problems. The analysis of the overall environmental impact of deploying the co-generator showed potential benefits in terms of reduced greenhouse gas emissions and local air quality improvement. Originality. Using a combination of scientific approaches encompassing physics and heat transfer engineering, in accordance with the first law of thermodynamics, such as the conservation laws of energy and entropy, and principles of heat exchange employed to transfer heat between different mediums, gas kinetics have yielded values for the energy transformation coefficient, indicating qualitative characteristics of fuel thermolysis and power generation as the final product. Practical value. The results provide for developing a comprehensive model of an advanced co-generation system capable of efficiently producing both electricity and heat with superior energy efficiency and minimal emissions. It also entails determining the types of models for mathematical modelling at all management levels and establishing a new method for input data formation for both technologies and their subsystems, incorporating additional technological implementations.