In vitro hydrogen generation represents a clear opportunity for novel bioreactor and system design. Hydrogen, already a globally important commodity chemical, has the potential to become the dominant transportation fuel of the future. Technologies such as in vitro synthetic pathway biotransformation (SyPaB)-the use of more than 10 purified enzymes to catalyze unnatural catabolic pathways-enable the storage of hydrogen in the form of carbohydrates. Biohydrogen production from local carbohydrate resources offers a solution to the most pressing challenges to vehicular and bioenergy uses: small-size distributed production, minimization of CO2 emissions, and potential low cost, driven by high yield and volumetric productivity. In this study, we introduce a novel bioreactor that provides the oxygen-free gas phase necessary for enzymatic hydrogen generation while regulating temperature and reactor volume. A variety of techniques are currently used for laboratory detection of biohydrogen, but the most information is provided by a continuous low-cost hydrogen sensor. Most such systems currently use electrolysis for calibration; here an alternative method, flow calibration, is introduced. This system is further demonstrated here with the conversion of glucose to hydrogen at a high rate, and the production of hydrogen from glucose 6-phosphate at a greatly increased reaction rate, 157 mmol/L/h at 60 °C.