To produce promising biocatalysts, natural enzymes often need to be engineered to increase their catalytic performance. In this study, the enantioselectivity and thermostability of a (+)-γ-lactamase from Microbacterium hydrocarbonoxydans as the catalyst in the kinetic resolution of Vince lactam (2-azabicyclo[2.2.1]hept-5-en-3-one) were improved. Enantiomerically pure (-)-Vince lactam is the key synthon in the synthesis of antiviral drugs, such as carbovir and abacavir, which are used to fight against HIV and hepatitis B virus. The work was initialized by using the combinatorial active-site saturation test strategy to engineer the enantioselectivity of the enzyme. The approach resulted in two mutants, Val54Ser and Val54Leu, which catalyzed the hydrolysis of Vince lactam to give (-)-Vince lactam, with 99.2% (enantiomeric ratio [E] > 200) enantiomeric excess (ee) and 99.5% ee (E > 200), respectively. To improve the thermostability of the enzyme, 11 residues with high temperature factors (B-factors) calculated by B-FITTER or high root mean square fluctuation (RMSF) values from the molecular dynamics simulation were selected. Six mutants with increased thermostability were obtained. Finally, the mutants generated with improved enantioselectivity and mutants evolved for enhanced thermostability were combined. Several variants showing (+)-selectivity (E value > 200) and improved thermostability were observed. These engineered enzymes are good candidates to serve as enantioselective catalysts for the preparation of enantiomerically pure Vince lactam.IMPORTANCE Enzymatic kinetic resolution of the racemic Vince lactam using (+)-γ-lactamase is the most often utilized means of resolving the enantiomers for the preparation of carbocyclic nucleoside compounds. The efficiency of the native enzymes could be improved by using protein engineering methods, such as directed evolution and rational design. In our study, two properties (enantioselectivity and thermostability) of a γ-lactamase identified from Microbacterium hydrocarbonoxydans were tackled using a semirational design. The protein engineering was initialized by combinatorial active-site saturation test to improve the enantioselectivity. At the same time, two strategies were applied to identify mutation candidates to enhance the thermostability based on calculations from both a static (B-FITTER based on the crystal structure) and a dynamic (root mean square fluctuation [RMSF] values based on molecular dynamics simulations) way. After combining the mutants, we successfully obtained the final mutants showing better properties in both properties. The engineered (+)-lactamase could be a candidate for the preparation of (-)-Vince lactam.
Read full abstract