To provide a theoretical basis for the application of ALA in pear production, the effects of exogenous 5-aminolevulinic acid (ALA) treatment on leaf photosynthetic gas exchange parameters, chlorophyll fast fluorescence properties, and relative expression of the related genes were investigated using pear (Pyrus pyrifolia Nakai cv. ‘Whasan’) as a material in the study. The results show that exogenous ALA treatment improved the photosynthetic gas exchange parameters of pear leaves, upregulated the expression of multiple key genes which are related to ALA biosynthesis, metabolism, and transformation into chlorophylls. GUS staining in tobacco leaves showed that exogenous ALA activated the promoter activity of PypHEMA and PypCHLH genes, implying that the synthesis of endogenous ALA and chlorophylls was promoted by exogenous ALA. Furthermore, ALA promoted the expression of the genes encoding photosystem II (PSII) reaction center proteins, such as core protein D1, inner light-harvesting pigment proteins CP43 and CP47, and cytochrome b559. This led to increased PSII reaction center activity. In addition, ALA alleviated the donor side oxygen-evolving complex inhibition and reduced the closure rate on the receptor side, allowing for increased photochemical electron transfer and reduced heat dissipation while improving the photosynthetic performance index PIabs and PItotal. The findings of this study contribute to a better understanding of ALA’s promotion of plant photosynthetic efficiency, providing valuable insights for further research and potential applications in pear production.