Water stress is a critical factor limiting the growth and development of Capsicum annuum. Flavonoids and lignin are important secondary metabolites that serve as signaling molecules in plant stress responses. However, the effects and regulatory mechanisms of lignin and flavonoids under water stress in Capsicum annuum remain unknown. The present study focused on the effects of drought and waterlogging stress on the morphology, hydrogen peroxide, and relative chlorophyll (SPAD), as well as enzyme activities, metabolite contents, and gene expression related to lignin and flavonoid metabolic pathways in Capsicum annuum. The results showed that drought and waterlogging stresses on the Capsicum annuum variety ‘Shuyu2’ significantly reduced plant height, stem thickness, and single-fruit weight, and increased fruit shape coefficients. Drought stress increased H2O2 and SPAD content, enhanced the activity levels of metabolic enzymes (phenylalanine deaminase, cinnamate 4-hydroxylase, coenzyme A ligase, peroxidase, and polyphenol oxidase), and up-regulated the expression of related genes, phenylalanine deaminase (PAL), trans-cinnamate monooxygenase (C4H), chalcone isomerase (CHI), and mangiferyl hydroxycinnamoyltransferase (HCT), while also promoting the accumulation of metabolites (total phenolics, flavonoids, and lignin) that have a restorative effect on drought stress. The continuous accumulation of H2O2 and the increase and then decrease in SPAD under waterlogging stress was also observed. Waterlogging stress also enhanced the activities of the above-mentioned metabolic enzymes, but the related genes were selectively down-regulated, e.g., C4H, 4CL, and peroxidase (POD), which resulted in the inhibition of the synthesis of lignin, flavonoids, and total phenols. These results indicate that the Capsicum annuum variety ‘Shuyu2’ is a drought-tolerant, waterlogging-sensitive variety. Meanwhile, the lignin and flavonoid pathway is a key pathway in response to drought stress in Capsicum annuum, which improves the theory of stress tolerance breeding in Capsicum annuum.