ObjectiveTo investigate the influence of electroacupuncture (EA) on ghrelin and the phosphoinositide 3-kinase/protein kinase B/endothelial nitric oxide synthase (PI3K/Akt/eNOS) signaling pathway in spontaneously hypertensive rats (SHRs). MethodsEight Wistar-Kyoto rats were used as the healthy blood pressure (BP) control (normal group), and 32 SHRs were randomized into model group, EA group, EA plus ghrelin group (EA + G group), and EA plus PF04628935 group (a potent ghrelin receptor blocker; EA + P group) using a random number table. Rats in the normal group and model group did not receive treatment, but were immobilized for 20 min per day, 5 times a week, for 4 continuous weeks. SHRs in the EA group, EA + G group and EA + P group were immobilized and given EA treatment in 20 min sessions, 5 times per week, for 4 weeks. Additionally, 1 h before EA, SHRs in the EA + G group and EA + P group were intraperitoneally injected with ghrelin or PF04628935, respectively, for 4 weeks. The tail-cuff method was used to measure BP. After the 4-week intervention, the rats were sacrificed by cervical dislocation, and pathological morphology of the abdominal aorta was observed using hematoxylin-eosin (HE) staining. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of ghrelin, nitric oxide (NO), endothelin-1 (ET-1) and thromboxane A2 (TXA2) in the serum. Isolated thoracic aortic ring experiment was performed to evaluate vasorelaxation. Western blot was used to measure the expression of PI3K, Akt, phosphorylated Akt (p-Akt) and eNOS proteins in the abdominal aorta. Further, quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to measure the relative levels of mRNA expression for PI3K, Akt and eNOS in the abdominal aorta. ResultsEA significantly reduced the systolic BP (SBP) and diastolic BP (DBP) (P < 0.05). HE staining showed that EA improved the morphology of the vascular endothelium to some extent. Results of ELISA indicated that higher concentrations of ghrelin and NO, and lower concentrations of ET-1 and TXA2 were presented in the EA group (P < 0.05). The isolated thoracic aortic ring experiment demonstrated that the vasodilation capacity of the thoracic aorta increased in the EA group. Results of Western blot and qRT-PCR showed that EA increased the abundance of PI3K, p-Akt/Akt and eNOS proteins, as well as expression levels of PI3K, Akt and eNOS mRNAs (P < 0.05). In the EA + G group, SBP and DBP decreased (P < 0.05), ghrelin concentrations increased (P < 0.05), and the concentrations of ET-1 and TXA2 decreased (P < 0.05), relative to the EA group. In addition, the levels of PI3K and eNOS proteins, the p-Akt/Akt ratio, and the expression of PI3K, Akt and eNOS mRNAs increased significantly in the EA + G group (P < 0.05), while PF04628935 reversed these effects. ConclusionEA effectively reduced BP and protected the vascular endothelium, and these effects may be linked to promoting the release of ghrelin and activation of the PI3K/Akt/eNOS signaling pathway.
Read full abstract