Network protocol implementations, as integral components of information communication, are critically important for security. Due to its efficiency and automation, fuzzing has become a popular method for protocol security detection. However, the existing protocol-fuzzing techniques face the critical problem of generating high-quality inputs. To address the problem, in this paper, we propose MSFuzz, which is a protocol-fuzzing method with message syntax comprehension. The core observation of MSFuzz is that the source code of protocol implementations contains detailed and comprehensive knowledge of the message syntax. Specifically, we leveraged the code-understanding capabilities of large language models to extract the message syntax from the source code and construct message syntax trees. Then, using these syntax trees, we expanded the initial seed corpus and designed a novel syntax-aware mutation strategy to guide the fuzzing. To evaluate the performance of MSFuzz, we compared it with the state-of-the-art (SOTA) protocol fuzzers, namely, AFLNET and CHATAFL. Experimental results showed that compared with AFLNET and CHATAFL, MSFuzz achieved average improvements of 22.53% and 10.04% in the number of states, 60.62% and 19.52% improvements in the number of state transitions, and 29.30% and 23.13% improvements in branch coverage. Additionally, MSFuzz discovered more vulnerabilities than the SOTA fuzzers.