Hybrid electrical vehicles (HEV) should be designed somehow torque is smooth. Because torque ripple not only reduces control precision but also increases elements vibration that causes acoustic noise, mechanical instability and early aging parts. Furthermore, torque per volume should be maximized and heat removal should be accomplished without torque weakening. It is proposed the volume and internal dimensions are determined due to the thermal considerations and maximize torque per volume. The mentioned application is neglected heat removal so volume is constant. Therefore, HEV is manufactured by two objective functions: either minimum fluctuations or maximum average torque. In this paper series hybrid excitation synchronous machine (SHESM) is utilized as HEV. Two-objective optimization problems are solved by MOEA/D, NSGA II, PESA II and SPEA II algorithms based on a two-dimensional (2-D) model. The performance indices of optimal structure are evaluated by 2-D and confirmed by numerical method.