In this article, master-slave synchronization of reaction-diffusion neural networks (RDNNs) with nondifferentiable delay is investigated via the adaptive control method. First, centralized and decentralized adaptive controllers with state coupling are designed, respectively, and a new analytical method by discussing the size of adaptive gain is proposed to prove the convergence of the adaptively controlled error system with general delay. Then, spatial coupling with adaptive gains depending on the diffusion information of the state is first proposed to achieve the master-slave synchronization of delayed RDNNs, while this coupling structure was regarded as a negative effect in most of the existing works. Finally, numerical examples are given to show the effectiveness of the proposed adaptive controllers. In comparison with the existing adaptive controllers, the proposed adaptive controllers in this article are still effective even if the network parameters are unknown and the delay is nonsmooth, and thus have a wider range of applications.