ObjectiveAdipose-derived stromal cells (ADSCs) have shown promise as a potential source of neural differentiation. In this study, we investigated the morphological, molecular and ultrastructural features of ADSCs during neuronal differentiation. MethodsADSCs were induced in vitro and their differentiation was examined at different time points. Immunocytochemical staining was performed to detect the expression of neuron-specific markers NSE and MAP-2. Immunofluorescence double labeling and Western blot detected the co-expression of presynaptic markers (CaMKII, SynCAM1, SYN) and postsynaptic markers (PSD-95, Synapsin I). Scanning electron microscopy (SEM) was performed to detect the synaptic structural features of differentiated neurons. ResultsADSCs showed diverse morphological features during differentiation, gradually acquiring a neuron-like spindle shape and organized arrangement. The expression of neuron-specific markers and synaptic markers peaked at 5 h of induction. Scanning electron microscopy showed polygonal protrusions of ADSC-derived neurons, and transmission electron microscopy showed characteristic ultrastructures such as nidus, synaptic vesicle-like structures, and tight junctions. ConclusionOur findings suggest that ADSCs differentiated for 5 h have neuronal features, including morphological, molecular, and ultrastructural resemblance to neurons, as well as the formation of synaptic structures. These insights contribute to a better understanding of ADSC-based neuronal differentiation and pave the way for future applications in regenerative medicine and neurodegenerative diseases.