In tick-borne encephalitis (TBE) the cerebrospinal fluid (CSF) cytosis is dominated by T CD3+CD4+ and T CD3+CD8+ lymphocytes, but their pathogenetic roles and mechanisms of migration into central nervous system (CNS) are unclear. Currently, we have studied CSF lymphocyte subsets and chemotactic axes in TBE patients stratified according to the clinical presentation. Blood and CSF were obtained from 51 patients with TBE (presenting as meningitis in 30, meningoencephalitis in 18 and meningoencephalomyelitis in 3), 20 with non-TBE meningitis and 11 healthy controls. We have studied: (1) abundances of the main lymphocyte subsets and (2) CXCR3 and CCR5 expression on CD3+CD4+ and CD3+CD8+ lymphocytes cytometrically with fluorochrome-stained monoclonal antibodies; (3) concentrations of chemotactic cytokines: CCL5 (CCR5 ligand), CXCL10 (CXCR3 ligand), IL-16, CCL2, CCL20 and CXCL5 with ELISA. Cytokine concentrations were additionally studied in 8 pediatric TBE patients. Data were analyzed with non-parametric tests, p < 0.05 considered significant. The higher CSF lymphocyte counts were associated with symptoms of CNS involvement, especially with altered consciousness (B, Th and Tc cells) and focal neurologic deficits (B cells). The minor fraction of double-positive T CD4+CD8+ cells was unique in associating negatively with encephalitis and altered consciousness. CSF CD3+CD4+ and CD3+CD8+ lymphocyte population was enriched in CCR5-positive cells and CCL5 concentration in CSF was increased and associated with a milder presentation. Although CXCL10 was vividly up-regulated intrathecally and correlated with CSF T lymphocyte counts, the CXCR3 expression in CSF T lymphocytes was low. Serum and CSF concentrations of CCL2, CXCL5 and IL-16 were increased in adult TBE patients, CCL2 created a chemotactic gradient towards CSF and both CCL2 and IL-16 concentrations correlated positively with CSF lymphocyte counts. The particular lymphoid cell populations in CSF associate differently with the clinical presentation of TBE, suggesting their distinct roles in pathogenesis. CCR5/CCL5 axis probably contributes to T lymphocyte migration into CNS. CXCL10 mediates the intrathecal immune response, but is probably not directly responsible for T cell migration. Additional chemotactic factors must be involved, probably including CCL2 and IL-16.
Read full abstract