Charge stripes have been widely observed in many different types of unconventional superconductors, holding varying periods (P\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${{\\mathcal{P}}}$$\\end{document}) and intensities. However, a general understanding on the interplay between charge stripes and superconducting properties is still incomplete. Here, using large-scale unbiased numerical simulations on a general inhomogeneous Hubbard model, we discover that the charge-stripe period P\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${{\\mathcal{P}}}$$\\end{document}, which is variable in different real material systems, could dictate the pairing symmetries—d wave for P≥4,s\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${{\\mathcal{P}}}\\ge 4,s$$\\end{document} and d waves for P≤3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${{\\mathcal{P}}}\\le 3$$\\end{document}. In the latter, tuning hole doping and charge-stripe amplitude can trigger a d-s wave transition and magnetic-correlation shift, where the d-wave state converts to a pairing-density wave state, competing with the s wave. These interesting phenomena arise from an unusual stripe-induced selection rule of pairing symmetries around on-stripe region and within inter-stripe region, giving rise to a critical point of P=3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${{\\mathcal{P}}}=3$$\\end{document} for the phase transition. In general, our findings offer important insights into the differences in the superconducting pairing mechanisms across many P\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${{\\mathcal{P}}}$$\\end{document}-dependent superconducting systems, highlighting the decisive role of charge stripe.