N(2)F(+) salts are important precursors in the synthesis of N(5)(+) compounds, and better methods are reported for their larger scale production. A new, marginally stable N(2)F(+) salt, N(2)F(+)Sn(2)F(9)(-), was prepared and characterized. An ordered crystal structure was obtained for N(2)F(+)Sb(2)F(11)(-), resulting in the first observation of individual N[triple bond]N and N-F bond distances for N(2)F(+) in the solid phase. The observed N[triple bond]N and N-F bond distances of 1.089(9) and 1.257(8) A, respectively, are among the shortest experimentally observed N-N and N-F bonds. High-level electronic structure calculations at the CCSD(T) level with correlation-consistent basis sets extrapolated to the complete basis limit show that cis-N(2)F(2) is more stable than trans-N(2)F(2) by 1.4 kcal/mol at 298 K. The calculations also demonstrate that the lowest uncatalyzed pathway for the trans-cis isomerization of N(2)F(2) has a barrier of 60 kcal/mol and involves rotation about the N=N double bond. This barrier is substantially higher than the energy required for the dissociation of N(2)F(2) to N(2) and 2 F. Therefore, some of the N(2)F(2) dissociates before undergoing an uncatalyzed isomerization, with some of the dissociation products probably catalyzing the isomerization. Furthermore, it is shown that the trans-cis isomerization of N(2)F(2) is catalyzed by strong Lewis acids, involves a planar transition state of symmetry C(s), and yields a 9:1 equilibrium mixture of cis-N(2)F(2) and trans-N(2)F(2). Explanations are given for the increased reactivity of cis-N(2)F(2) with Lewis acids and the exclusive formation of cis-N(2)F(2) in the reaction of N(2)F(+) with F(-). The geometry and vibrational frequencies of the F(2)N=N isomer have also been calculated and imply strong contributions from ionic N(2)F(+) F(-) resonance structures, similar to those in F(3)NO and FNO.