In the present work, a series of solid solutions were synthesized using the solid-state reaction method for x = 0.0, 0.05, 0.10, and 0.15 in system (1-x)Bi0.85La0.15FeO₃-(x)Ca0.5Sr0.5TiO3 or ((1-x)BLFO-(x)CSTO) ceramics. Structural, optical, dielectric, and ferroelectric properties were studied in detail to investigate the impact of CSTO doping in BFO. Rietveld analysis of X-ray diffraction data of all samples revealed the formation of a single-phase solid solution with a distorted rhombohedral perovskite structure for x = 0.00 and 0.05, characterized by R3c symmetry, a mix of rhombohedral (R3c) and monoclinic (Cc) phases for x = 0.10 (R3c 31 % and Cc 69 %), whereas for x = 0.15 a single-phase solid solution with Cc symmetry was found. UV–visible analysis demonstrated that the optical band gap was increased from 2.11 eV for x = 0.0 to 2.21 eV for x = 0.15 in the visible range, and can be used in photovoltaics applications. The room temperature dielectric properties were measured, and a crucial role of CSTO was revealed in modifying the dielectric properties of BLFO ceramics; the dielectric constant and dielectric loss at 10 kHz change from εr = 82 and tanδ = 0.88 for x = 0.0 to εr = 116 and tanδ = 1.08 for x = 0.15. The leakage current density decreases while increasing the CSTO % from x = 0.0 to 0.15 due to the suppression of oxygen and Bi vacancies, a fact that is further reflected in the ferroelectric properties of CSTO-doped BFO ceramics. Room temperature ferroelectric properties improved with CSTO doping, and Pr was found to be 0.24 μC/cm2, 0.28 μC/cm2, and 0.84 μC/cm2 for x = 0.05, 0.10, and 0.15, respectively.
Read full abstract